Journal of Organometallic Chemistry, 144 (1978) 175–179 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

KRISTALL- UND MOLEKÜLSTRUKTUR VON PENTACARBONYL-TETRAHYDROFURAN-CHROM(0)

U. SCHUBERT*, P. FRIEDRICH und O. ORAMA*

Anorganisch Chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching (B.R.D.)

(Eingegangen den 9. August 1977)

Summary

The title compound crystallizes in the monoclinic space group $P2_1/c$ with a 873, b 1133, c 1203 pm, β 110.90° (-30°C). The chromium atom is octahedrally coordinated by five CO and one tetrahydrofuran ligand. The Cr—O distance is 212.3 pm, the THF ligand shows a twist configuration.

Zusammenfassung

Die Titelverbindung kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit a 873, b 1133, c 1203 pm, β 110.90° (-30°C). In dem Molekül ist das Chrom-Atom durch fünf CO und einen THF-Liganden oktaedrisch konfiguriert. Der Cr-O Abstand beträgt 212.3 pm, der THF-Ligand besitzt twist-Konfiguration.

Beim Bestrahlen von Metallcarbonylen mit einer Quecksilber-Hochdrucklampe in Lösungsmitteln mit guten Donor-Eigenschaften wie Äthern oder Aminen erhält man Komplexe, bei denen ein CO-Ligand durch ein Lösungsmittel-Molekül ersetzt ist [1]. Da sich das koordinierte Solvens-Molekül meist sehr leicht durch andere Nucleophile verdrängen lässt, werden diese Komplexe — insbesondere solche mit Äthern als Ligand — oft als Ausgangsverbindungen für metallorganische Synthesen verwendet. Auf eine Isolierung der Äther-Komplexe wird dabei meist verzichtet, da die Komplexe in Substanz thermisch labil sind. Wir berichten hier über die Röntgenstrukturanalyse eines Vertreters dieser Substanzklasse, Pentacarbonyl-tetrahydrofuran-Chrom(0) (I), die Aufschluss über die Bindungsverhältnisse in derartigen Komplexen geben sollte.

* Ständige Adresse: Department of Chemistry, University of Helsinki, Vuorikatu 20 H:Ki 10 (Finland).

KRISTALLDATEN ^a	
Summenformel	C9H8CrO6
Molekulargewicht	259.2
Raumgruppe	P21/c
Moleküle/Zelle	4
Zellkonstanten: a	877.3(8) pm
b	1133(1) pm
C	1203(1) pm
₽	110.90(8) ⁶
V	$1112 \times 10^{\circ} \text{ pm}^{3}$
Dichte (berechnet)	1.59 g × cm ⁻³
Linearer Absorptionskoeff. $\mu(Mo-K_{\alpha})$	10.8 cm ⁻¹

^a Messtemp. -30° C, Mo- $K_{\alpha}(\lambda$ 71.069 pm), Graphit-Monochromator

Experimentelles

Ein Kristall der ungefähren Grösse $0.15 \times 0.3 \times 0.3$ mm wurde in einer Atmosphäre von trockenem Stickstoff unter Trockeneis-Kühlung [2] in ein Mark-Röhrchen eingeschmolzen und unter Kühlung auf einem automatischen Vierkreis-Diffraktometer Syntex $P2_1$ mit Kühleinrichtung LT-1 montiert. Die Bestimmung der Zellkonstanten (s. Tabelle 1) sowie die Intensitätsmessungen (ω -scan) wurden bei -30° C mit Hilfe von Mo- K_{α} -Strahlung (λ 71.069 pm, Graphit-Monochromator) durchgeführt. Nach Lorentz- und Polarisations-Korrektur wurden 929 unabhängige Strukturfaktoren ($2^{\circ} \leq 2\theta \leq 43^{\circ}$, $I \geq 3.1 \sigma$) erhalten. Die Lage des Chrom-Atoms ergab sich aus einer Patterson-Synthese, die der übrigen Nicht-Wasserstoff-Atome aus zwei sich anschliessenden Differenz-Fourier-Synthesen. Anisotrope Verfeinerung aller Atome nach der Vollen-Matrix-Methode

ergab als *R*-Faktoren R_1 0.053 bzw. R_2 0.056. Nach Berechnung der Atomparameter der Wasserstoffatome und erneuter anisotroper Verfeinerung der Nicht-Wasserstoffatome (die Parameter der Wasserstoffatome wurden konstant gehalten) wurden abschliessende *R*-Faktoren von R_1 0.035 bzw. R_2 0.032 erhalten.

TABELLE 2

ATOMPARAMETER VON I

Die anisotropen Temperaturparameter beziehen	sich auf: $T = \exp(-1/4(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33})$
+ $2hka^{*}b^{*}B_{12}$ + $2hla^{*}c^{*}B_{13}$ + $2klb^{*}c^{*}B_{23}$))	

2

Atom	x/a	y/b		z/c	В	
 Cr(1)	0.3035(1)	0.1482(1)		0.1339(1)		
C(1)	0,3788(5)	0.2377(4)		0.0395(4)		
0(1)	0.4263(4)	0.2962(3)		-0.0204(3)		
C(2)	0.2906(6)	0.2877(5)		0.2166(4)		
0(2)	0.2901(5)	0.375	55(3)	0.2618(3)		
C(4)	0.5252(7)	0.1313(4)		0.2388(4)		
0(4)	0.6600(5)	0.1309(3)		0.2965(3)		
C(3)	0.3197(5)	0.0114(4)		0.0454(4)		
O(3)	0.3303(4)	-0.0654(3)		-0.0115(3)		
C(5)	0.0902(6)	0.1747(4)		0.0239(4)		
O(5)	0.0331(4)	0.1959(3)		-0.0487(3)		
0(6)	0.2138(4)	0.042	23(2)	0.2429(2)		
C(6)	0.2991(6)	-0.0571(4)		0.3103(4)		
C(7)	0.1850(7)	-0.108	34(5)	0.3645(5)		
C(8)	0.0787(6)	0.0720(5)		0.2776(4)		
C(9)	0.0930(7)	-0.004	12(6)	0.3813(4)		
H(61)	0.40181(0)	0.03 4	138(0)	0.37168(0)	6.0(0)	
H(62)	0.32439(0)	-0.115	517(0)	0.25889(0)	6.0(0)	
H(71)	0.23904(0)	-0.146	569(0)	0.43969(0)	6.0(0)	
H(72)	0.10732(0)	-0.163	310(0)	0.31108(0)	6.0(0)	
H(91)	-0.01231(0)	-0.025	584(0)	0.38358(0)	6.0(0)	
H(92)	0.15625(0)	0.035	561(0)	0.45424(0)	6.0(0)	
H(81)	0.07879(0)	0.15604(0)		0.29921(0)	6.0(0)	
H(82)	-0.02776(0)	0.05789(0)		0.21348(0)	6.0(0)	
Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Cr(1)	2.64(4)	2.45(3)	2.17(3)	0.00(3)	0.77(3)	0.14(3)
C(1)	2.8(3)	3.5(3)	2.9(2)	0.0(2)	0.5(2)	-0.5(2)
0(1)	5.1(2)	4.5(2)	3.3(2)	-1.1(2)	1.5(2)	0.6(1)
C(2)	3.8(3)	3.1(3)	3.3(2)	0.3(2)	0.9(2)	0.3(2)
0(2)	7.9(3)	3.1(2)	5.1(2)	0.9(2)	1.4(2)	-1.1(2)
C(4)	3.8(3)	2.8(2)	3.2(2)	0.2(3)	1.1(2)	0.2(2)
0(4)	3.5(2)	4.9(2)	5.5(2)	0.1(2)	-0.1(2)	0.0(2)
C(3)	2.4(3)	3.8(3)	2.9(2)	-0.1(2)	1.0(2)	0.2(2)
O(3)	5.3(2)	4.2(2)	5.5(2)	-1.0(2)	2.9(2)	-1.9(2)
C(5)	3.4(3)	3.6(3)	3.1(2)	-0.2(2)	1.5(2)	0.2(2)
O(5)	3.6(2)	6.6(2)	4.5(2)	0.3(2)	0.0(2)	1.0(2)
0(6)	3.3(2)	3.2(2)	3.3(1)	0.7(1)	1.8(1)	0.8(1)
C(6)	4.0(3)	3.7(3)	4.7(3)	0.2(2)	2.1(2)	1.6(2)
C(7)	5.6(3)	5.4(3)	4.9(3)	-1.1(3)	2.2(3)	1.7(3)
C(8)	3.5(3)	5.2(3)	4.3(3)	0.6(2)	2.2(2)	0.7(2)
C(9)	5.3(4)	7.7(4)	4.5(3)	-1.0(3)	3.0(3)	0.2(3)

Beschreibung der Struktur und Diskussion

In Tabelle 2 sind die Atom-Parameter von I, in Tabelle 3 die sich daraus berechnenden intramolekularen Abstände und Winkel wiedergegeben.

Das zentrale Chromatom ist annähernd oktaedrisch konfiguriert. Die Bindungswinkel zwischen benachbarten CO-Gruppen sowie zwischen den äquatorialen CO-Gruppen und dem Sauerstoffatom O(6) des THF-Liganden sind nur geringfügig von \mathfrak{W}^{s} verschieden. Es ist jedoch eine, allerdings nur schwach ausgeprägte regenschirmartige Verbiegung der äquatorialen CO-Gruppen von THF-Liganden weg festzustellen. Die axiale CO-Gruppe ist linear, in den übrigen CO-Gruppen weicht der Bindungswinkel Cr-C-O um durchschnittlich 5° von der Linearität ab.

Während die mittleren Bindungslängen Cr—C (189.9 pm) und C—O (113.5 pm) der vier *cis*-ständigen CO-Liganden ungefähr denen in Hexacarbonylchrom entsprechen (Cr—C 190.9 pm; C—O 113.7 pm [3]), wird in I für die *trans*-ständige CO-Gruppe ein wesentlich kürzerer Cr—C-Abstand (181.2 pm) sowie ein etwas verlängerter C—O-Abstand (115.9 pm) beobachtet. Ein derart deutlicher Unterschied in den Bindungslängen *cis*- und *trans*-ständiger CO-Gruppen in Komplexen des Typs (CO)₅CrL wird nur selten gefunden [4] und ist auf das schlechte π -Acceptor-Vermögen des THF-Liganden und die dadurch bewirkte verstärkte Rückbindung zur *trans*-CO-Gruppe zurückzuführen.

Die Ebene C(6)—O(6)—C(8) schliesst mit den beiden Oktaeder-Ebenen Winkel von 40° (Ebene C(1)/C(4)/C(5)/O(6)/Cr(1)) bzw. 51° (Ebene C(1)/C(2)/C(3)/O(6)/Cr(1)) ein, der THF-Ligand steht also mit den CO-Gruppen auf Lücke.

Strukturuntersuchungen an zwei THF-Komplexen des Chroms(III) [5,6] haben gezeigt, dass die Cr-O-Bindungslänge stark vom Liganden in *trans*-Stellung abhängt. Zwei zueinander *trans*-ständige THF-Liganden in $(THF)_3Cr[NCCr (CO)_5]_3$ wiesen Abstände von 200 pm zum Zentralmetall auf [5], ein zu einem *p*-Tolyl-Rest *trans*-ständiger THF-Ligand in Cl(THF)_3CrC₆H₄CH₃ dagegen 221.4 pm [6]. Mit 212.3 pm fügt sich der in I beobachtete Cr⁰-O-Abstand in diese

TABELLE 3

BINDUNGSLÄNGEN (pm) UND WINKEL (°) IN I

	181.2(5)	C(1)-Cr(1)-C(2)	88.0(2)	Cr(1)C(1)O(1)	179.2(4)
Cr(1)-C(2)	189.2(5)	C(1)-Cr(1)-C(3)	89.4(2)	Cr(1)C(2)C(2)	174.6(5)
Cr(1)C(3)	191.4(5)	C(1)-Cr(1)-C(4)	87.8(2)	Cr(1)-C(3)-O(3)	176.2(4)
Cr(1)-C(4)	190.6(5)	C(1)-Cr(1)-C(5)	87.7(2)	Cr(1)-C(4)-O(4)	173.4(5)
Cr(1)C(5)	188.5(5)	C(1)-Cr(1)-O(6)	179.4(2)	Cr(1)C(5)O(5)	174.1(5)
C(1)O(1)	115.9(6)	C(2)-Cr(1)-C(3)	177.4(2)	Cr(1)O(6)C(6)	124.2(3)
C(2)O(2)	113.5(6)	C(2)-Cr(1)-C(4)	88.4(2)	Cr(1)O(6)C(8)	125.0(3)
C(3)O(3)	113.0(6)	C(2) - Cr(1) - C(5)	90.4(2)	C(6)-O(6)-C(8)	109.8(4)
C(4)O(4)	113.3(7)	$C(2)-C_{t}(1)-O(6)$	92.5(2)	O(6)O(6)C(7)	105.1(4)
C(5)O(5)	114.4(7)	C(3)-Cr(1)-C(4)	91.6(2)	C(6)-C(7)-C(9)	103.2(5)
Cr(1)O(6)	212,3(3)	C(3)-Cr(1)-C(5)	89.4(2)	C(7)-C(9)-C(8)	103.7(5)
O(6)C(6)	143.1(6)	C(3)-Cr(1)-O(6)	90.2(2)	C(9)-C(8)-O(6)	106.1(4)
O(6)-C(8)	142.5(6)	C(4)Cr(1)C(5)	175.4(2)	-	
C(6)-C(7)	149.0(8)	C(4)-Cr(1)-O(6)	92,6(2)		
C(7)-C(9)	148.1(9)	C(5)-Cr(1)-O(6)	91.9(2)		
C(9)C(8)	148.5(8)	•			
	-				

Reihe ein, ist jedoch erwartungsgemäss etwas länger als der durchschnittliche Cr^{III}—O(THF)-Abstand.

Von den beiden bevorzugten Konformationen des freien THF ist die twist-Konformation (C_2 -Symmetrie) gegenüber der Briefumschlag-Konformation (C_s -Symmetrie) energetisch begünstigt [7]. In Koordinationsverbindungen des THF werden beide Konformationen gefunden (twist z.B. in [6], Briefumschlag z.B. in [8]), in [(C_8H_8)ClCe(THF)₂]₂ sogar beide gleichzeitig [9]. In der vorliegenden Verbindung I nimmt der THF-Ring twist-Konformation ein. C—C und C—O Bindungslängen in THF-Komplexen sind sehr unterschiedlich. Mittelwerte reichen von 147 pm [9] bis 151 pm [8] für C—C bzw. von 143 pm [9] bis 147 pm [8,10] für C—O (verglichen mit 153.6 pm bzw. 142.8 pm in gasförmigem THF [11]). In I ist der mittlere C—O-Abstand identisch mit dem in gasförmigem THF, der mittlere C—C-Abstand mit 148.5 pm dagegen deutlich kürzer.

Dank

Wir danken Herrn Prof. Dr. mult. E.O. Fischer für die Unterstützung dieser Arbeit, Herrn Dipl. Chem. W. Kleine für die Überlassung von Kristallen. O.O. dankt der Alexander von Humboldt-Stiftung für ein Stipendium.

Literatur

- 1 W. Strohmeier und K. Gerlach, Chem. Ber., 94 (1961) 398 und die dort zitierte Literatur.
- 2 E.O. Fischer, T.L. Lindner, H. Fischer, G. Huttner, P. Friedrich und F.R. Kreissl, Z. Naturforsch. B32 (1977) 648.
- 3 A. Whitaker und J.W. Jeffery, Acta Crystallogr. 23 (1967) 977.
- 4 H.P. Calhoun and J. Trotter, J. Chem. Soc. Dalton, (1974) 377.
- 5 F. Edelmann und U. Behrens, J. Organometal. Chem., 131 (1977) 65.
- 6 J.J. Daly und R.P.A. Sneeden, J. Chem. Soc. A, (1967) 736.
- 7 (a) W.J. Lafferty, D.W. Robinson, R.V. St. Louis, J.W. Russell und H.L. Strauss, J. Chem. Phys., 42 (1965) 2915; (b) J.A. Greenhouse und H.L. Strauss, J. Chem. Phys., 50 (1969) 124; (c) G.C. Engerholm, C.A. Tolman, A.C. Luntz, R.A. Keller, H. Kim und W.D. Gwinn, J. Chem. Phys., 50 (1969) 2438; (d) G.C. Engerholm, A.C. Luntz, W.D. Gwinn und D.O. Harris, J. Chem. Phys. 50 (1969) 2466.
- 8 D.J. Brauer und C. Krüger, J. Organometal. Chem., 42 (1972) 129.
- 9 K.O. Hodgson und K.N. Raymond, Inorg. Chem., 11 (1972) 171.
- 10 J.L. Atwood und K.D. Smith, J. Chem. Soc., Dalton, (1974) 921.
- 11 H.J. Geise, W.J. Adams und L.S. Bartell, Tetrahedron, 25 (1969) 3045.